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1. Introduction

Our understanding of nonlinear dynamics of deep water gravity waves

has grown substantially in recent years. We feel that the lion's share of

this progress should be attributed to the staff of the TRW Fluid Mechanics

Department. Most of their findings are summarized in an extensive review

article by Yuen & Lake. (1982), which served as our main reference. Much of

this progress is based on applications of the so-called Zakharov equation

which was originally derived by Zakharov (1968) for infinitely deep water..

In order to extend the range of application we re-derive Zakharov's equation

for finite water depth (in section 2) and show its relations to the cubic

Schr-dinger equation and to Hasselmann's nonlinear interaction model (in

section 3). It is generally accepted now that the Zakharov equation is

superior to all other existing approximate models as far as Class I inter-

actions are concerned.

The term 'Class I interactions' refers to nonlinear interaction

processes at the lowest possible order; for surface gravity waves this

occurs at third order in the nonlinearity parameter c. Generally speaking,

Class I interactions reqL:ire the coexistence of resonating, or nearly
-2

resonating, wave quartets. The time scale of Class I interactions is E P

where P is a typical wave period.

The structure of the surface gravity wave dispersion relation does not

enable nonlinear interaction at shorter time scales (c P) which occur in

many other physical systems,(e.g., capillary waves).

While Class I interactions are basically four wave interactions, the

special case where one of the waves is taken into account twice so that

only three waves are considered, has attracted much attention. These cases

which lead to what sometimes is called Benjamin-Feir instabilities, display

many of the features of the more general quartet interaction. Interactions

including a smaller number of waves - as two waves each taken into account

twice, or one wave taken into account four times - are also possible, but

display a degenerated type of interaction which manifests itself in Stokes-

type second order corrections of the frequency (see Longuet-Higgins and
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Phillips 1962). Numerical linear stability analysisof the exact finite

amplitude Stokes wave, by McLean (1982a,b), as w.ell as experimental evidence

-by Su et. al. (1982) and Su (1982), reveal the importance of Class II inter-

actions, which are basically quintet interactions. These, much less studied

interactions, occur at fourth order in e and have a typical time scale of

(-p. Nevertheless, for high enough steepnesses McLean's study shows that

Class II instabilities become dominant. Here again, three waves - one of

them is taken into account three times - form a nearly resonating quintet
-nd display many interesting features. In the second half of section 2 we

extend the derivation to fourth order and derive a modified form of the

Zakharov equation which accounts for both Class I, and the higher order,

Class II, interactions.

In section 4, we use this equation to study the linear stability of a
uniform '. ve train. The solution of certain long line evolution problems

is under way and will be reported at a later stage.
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2. The Qoverning equations

The equations governing the irrotational flow of an Incompressible,

inviscid fluid with a free surface are: -

v 0 , -h<z <r(x,t), (2.}

:: n+ (.VO) (vn) -,,= fz 0
t (2 "$(,)1.2a~b) :

• - , z -h,(2.3) -
,f%

where # is the velocity potential, Ti is the free surface, and g is the

gra.vltatlonal acceleration. The horizontal coordinates are (x,x2 ) - x, the

vertical coordinate z is pointing upwards, h is the mean water depth, and

t is the time.

The-free surface boundary conditions, Eq. (2.2),are rewritten in terms

of *s and ws - (-) [zn the velocity potential and the vertical velocity

component at the free surface, respectively

+ sVx5 )(V -n) - wSfl + (V n) 2  -0 (2.4a)

-gn + (V (S) 0.4b)+ x +(VXn-2b, x

The horizontal Fourier transform of these equations yields

-~ ~ ~ ~ ~~' r.Jj(1 ~ 5 ~t t)6(-1 -k )dk dk2 -w

+ 1i 2I (k2.k)w5(k,t)f(k t)fi(k~t) 6 (!-.j- 2-k )dk dk dk -0
( - -- 3 (2.5a)

4 , ', : :":' ".:-:', .'-:- -, -,' :: ' , ' ''" ' - - - ..
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11 rr S 0 - - 2 _II7 -

_f t)6(k-k S% )dk +
II w '5 t) 6 (k-k I O-k I _2k k

rr-' 'S!k 1

+_46w Ii kt) ws(k 21 t) 3,t)i(k V't) 6 ( k -k I-k 2 -k 3-k 4

d_1 dk.2 dk 3 d4r (2.5b)

where the two dimensional Fourier transform of a function f(x) is given by

_ &- f (x) e -dx,

and Dirac 6 function is defined as
-* r ik.x

6(k) = e -dx

Taking the Fourier transform of Laplace Eq. (2.1), and satisfying the

boundary condition at the bottom, Eq. (2.3), gives

;(k,z,t) $(k,t)ch(I k -,+h)), (2.6)

which enables one to write o and w in terms of 4(k,t) and n(xt)

as follows

S (xt)= f J $(k,t)[ch(IkIh)ch( IkII(x,t))+sh(Ikh)sh(IkIn(x,t))] e ---dk
(2 .7a)

w *(... Jlklo (k,t)[ch( k h)sh(I k n(x,t))l+sh(Ikih)ch,(I n(xkt))e b- dk

-C, T T( 
2 . 7 b )

"4"

,.4' - .
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^S

The next step in the derivation is to express w as a function of and ^s

This is the first step which requires an additional physical assumption.

Assuming that IkIln is small, we pursue the following procedure:' (i) replace

sh(Iktr1) and ch(Ikn), in Eqs (2.7a,b). by their Taylor series expansions

up to order (1km) 3; (ii) express n by means of its Fourier tranform ;

and finally, (iii) take the Fourier transform of Eqs.(2.7a,b),

QSLkt)-_ "( tlch( (kj h) + I__ Ish ( lh N kk "t);(k "t)S6(I'-k--l -A- - - dk dk +  ::
.1F -2- 2 1-

+) ch(lkh) i ,t),-(k t)h(k,t)(k-k -k -k )dk dk dk +

2w) 2-- - -2-3 -I-2 -3

+( Jh( Jh)(k ,t)(k ,t)k ,t)( t(k-k -k -k -k -k dk +

, , -- -2 -3 t -I - -- 4

dk dk dk dk (2.8a)... - -2 -3 ;-"4

(k,t) = Ikik,t)shllklh)+ JkII.ch(.LIh)0(k ,t)n(k ,t)6(k-k -k )dk dk +
2 - - -2 -17 -2 -1 -Z

lk Ii+ 2l-l h( h)4(k ,t)n(k t);-k(kt)(k -k-k )dk dk dk +

* (ir) JJJ 6 ch(Ik Ih)^t(k ,t)%(k it)"(k ,t)*n(k *t) (k-k -k Ak -k)(2r 6 1--1-2 -4-3 -4

*dk dk dk dk (2.8b)

-1 -2. -3 -4"'

Inverting Eq. (2.8a) Iteratively, in order to obtain D s, and

substituting the result Into Eq.(2.8b), yields

#4 • • ° • ° -" • • + • . . , + , " " .
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w (kt)- jklth(IkIh)es(k,t) -

* itt I.~.1[1I1 th( I.Ih)th( 11-J Ih)-I.LJ (k0 ,t)(k *t)6(t- k k)kd
-2 _)'2 1

" r -5I1 ( kk ,k_ i~k .),S(k 't)k _(k t) 6(k .k -k )dkdk dk

Q -T -,2 (, , k k k4-k .' N2 ., ,* (k a n .,, ,- ,-k -k -4.)
J -2 - -3 -2 -3

dk dk dk dk (2.9)
1 3

the kernels, s(I)(k,k ,k2 ,k3 ), S-2)(k,k 1,k2 ,k3 ,), as well as other

kernels, which appear throughout the derivation, are given in the Appendix.AS

Substituting 0, from Eq. (2.9) into Eqs. (2.5a,b), multiplying Eq. (2.5a)
fby

by 2,(k) , atod Eq. (2.5b) by [ _)
:) - 2g

where w(k) [gljklth(Ikjh)]J , (2.10)

adding these equations together, and defining the new complex variable

bf (k "t) 9 n(i ) ( .,.t
L 2Lw 2gJ

yields the following equation:

b (k,t) + lw(_)b(k,t) +
tm

+ijf v~'1(klk )b(LI ,t)b(k ,t) 6(k- 1 d dm .

(2)

+ iff o(2)(k '1) b*(t ,t) b ( ,t) 6 (k+k I- k)dkldk +
-2 2

. - .: . .. - -'.. --... '--,. . .- '.', .. . . - . • .. , . , , ...-. .-. . . - .. ,,--... -, - -- - , , ', - , . •
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v)(kk)b(k tb*k,;)(t+k,+k )dk dk +
-2f -212 2 1 2

9$ --: W(k.,k t,k3)b*(k ,t)b(k t)b(k ,t)6(k+_k-k!Lk3)dk dk dk +

jJ i- -- -2 -3

.i QXL(k(k, k 2,k3, )b*( k ,t)b(k t)b( k ,t)b(.k ,t 6(kk-k -k -k.dk dk +

I~~I~ fJj ~k*1 ,i,)b*( .t)b*(yt)b(k t) (t)6(kkA )4k-d ddk +~~.,

| jjr ) (k k,k,b(b,tb(k t)b(,t)b(yt)6(k.+k-+k2+k3-)dkkdkdk4 +

,a

(2(2

a wher. denotes the coup lex conjugate U

The relations between n, *s and the complex "amplitude spectrum" b" are
(k.(k) k'l/4

w2 , t.3- =-)b*Ql [*k,t) + b*-k,t) 2 .1

(11 ;_k,t) - -tb t[b(k,t) - b*(-k,t) (2.Zb)

3-4)' -2 ~ -3 4 t)Q k, +1.' +k 4)... . -kd 2. qk 3 d a

wher agnte the comle conjugateS S

The~~~~~~~~--' reain betee S n.h'cmlx"apiuspectru" b*

R5 w.k 1/2S- 

5
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We assume that the wave field can be divided into a slowly varying (in time)

component B and small rapidly varying components B'. B", B"' and'that-most

of the energy in the wave field is contained in B. These assumptions -ermit

one to write

b(k,t) - [cB(k,tt 3 ) + c2B'(k,t,t2 ,t3)+ c3 B"(k,t,t2,t3) +

+ C4Bhh' (k,t,t 2 t3)]e-iw(k)t (2.13).

where c is a small parameter representing the magnitude of nonlinearity, and

the slow time scales are defined by t2 = C2t, t3 = 3t. The omission of the

slow time tI a et from Eq. (2.13)results from the fact that resonating triads
donot exist for surface gravity waves. Substituting b, from Eq. (2.13), into

Eq. (2.11) and arranging the terms according to their order in c yields the

following results:

Order c - is satisfied identically

Order E2 -gives an equation for B'

i 1Bl 2B1B2 $0 -2e + BIB 26o~l- 2e B "
at J ,1 0,1,212 1

+ V(3) ~(-u+* d 
0,1,2BI B26 0+1+2 edk 2 (2.14a)

where we have introduced the compact notation in which the arguments k- in V,

B, 6, w, and in other functions in the sequel, are replaced by subscripts i,

with the subscript zero assigned to k. Integrating Eq. (2.14a) with respect

to t and keeping t2 , t3 fixed, gives

I . i26 e 'l-2 )
t

B' = IV ( ) ~ - e +
-1 " 0,1,2l B260 1 -2 .u--w 2""i "=2-W -) t
+ V(2) -*~ e+

0 ,.1,2B 1B260+1-2 +l-2 +

+ V(3) -* *e ))+~ ,2BlB260+ +i-+ ) dkIdk (2.14b)

0,1, 1 20+1+ w~w1+w2=1 =
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The constant of integration, which corresponds to the initial phase, has

been set to zero without loss of-generality.
3

Order c- gives the following equation

- 3 2  t jj 0,1,2,3 1 2 3 0-1-2-3B1B2B9360_l.2_3 (l)eI ~ ~ t+

"* 1(2) -*-- i(+Wl'wz-)t
0,1,2,3 1B2 B3 60 + 1 2 3 e +

T(3) B"V B*~ B (w+wl+ 2 -_3 )t +"0,1, 2 ,3  1B2 B36 0+1+2-3e +

0,1,2,3 31 2"30+1+2+3 NZ

(2

4The above equation consists of terms of two types; those which depend on the

fast time t, and those which do not. This enables us to split Eq. (2.15)

- into separate equations:

A rP (~2) - _~ww2 -)3) t-t - T 0,1,2.3 BiB 2B360+1 _2 3 e dld2d (2.16)

lw.. - CO, 1,2,3 BBB6~ 2  ~~l~~)

at T ) B0,1,23 B1B2B3 20-e1-2-3 e +

-... i% ((3 i-2B3 l2- 3)t2 ~
+ (i.(2) - T (2) "*" (~w~2w)

'0,1,2,3 0,1,2,3 B1B2B3 0+1-2-3•+

+ y()+(+
8 B B 6 ( +w+2-w)t+

0,1,2,3 1 0+1+23

+ I"012 3 B1BzB 360 + 1+2 +3 e } dkldt2dk3  (2.17a)

Here we made use of the fact that the only exponent of e which may become zero,

under the restriction of the 6 functions, is the one in the second term in

the r.h.s. of Eq. (2.15). This fact is directly related to the definition

,. of a nearly resonating quartet,
I

-::................................................................ . . . . .... .. ........ ... . ...... , ... , .
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60+1-2-3 0 1W0 +wi_ 2-"w3 1 < 0(c2) (2.18a,b)

Equation (2.16) is the so-called Zakharov equation, with the kernel
f (2) for near resonance quartets

T_ 0,1,2,3' (2.19)
0,1,2,3 0 9 otherwise

used as a mathematical model for Class I nonlinear interactions. Integrating

Eq. (2.17a) with respect to t gives the following result for B",

S- l - . _i( -_-_3)t _ _ 

l 
_B" = * l {T(I) BeB

JJ 10,1,2,3 1230-1-2-3 -I -2-3

+ {(2) T T(2) B 2B360+__ e I 2 +
+ 0,1,2,3 0,1,2,3 12 3 0+123 w~wl-w 2-w3

(3) -*-* e 1+w2-w3,+ T 1,2,3 BB 2B360++2-3  '+W1+2-3 +

.-(4) 1~* }+dk.+w3 d
0,1,2,3 BB 2B3 0+1+2+3 e W+W -O3dk 1 3

+w2+w (2.17b)

Order 
4:

at 3  at at +
2  0,1,2,3,4 1B2B3B4 0-1-2-3-4

,(2) , B 8B4 a iWWl (w+wi 2-- 3- 4)t +0.o,1.2,34 41B2B3B4 0+1-2-3-4e

: ~+ U(3) ,34~~340l234i(W+W l W2 -uw3 -w4)t +
0' ,l,2,,12B3B4 012--e+

+ 5(4) B*~**~ B 6 e +w+2+w3-u)4)t +

0,1 ,2 ,3 ,4B1 B2 B3B460+1+2+3-4e

(2.20)



In order to split Eq. (2.20) appropriately into two separate equations,
one for A and the other for aBt which becomes relevant only in sextet

interactions, we make use of the fact that only the second and third integrands

in Eq. (2.20) enable resonating quintets. Similarly to Eq. (2.18), the nearly
*. resonating quintets.are defined

-0+1_2-34 0 lo+sll- f-3-S141 < O(c3) (2.21a,b)

where D., the "Stokes corrected" frequencies, are given by

2 j Ia j
C= JejlT1jl I 1 dk-1  ' e 1  (2.2=c1

The Stokes corrected frequencies are obtained by solving Eq. (2.16) for
degenerated interactions, namely: "quartets" formed by two waves, each taken

into account twice. These corrections become necessary at the order of deriva-

tion considered here. Defining
rf j,(2) for nearly resonating quintets

(2),, = 0,1,2,3,4'(2)
0,1,2,3,4

0 , otherwise (2.22a)

0(3) fS0,1,2,3,4 for nearly resonating quintets

0,1,2,3,4 =
0 , otherwise (2.22b)

we obtain

a t O Uo 1 2 , 3 , 4 B1B2 B3 B4 0 + 1_2 -3 -4 •

+ ( 3 )  4 i(W*l+( 2-w3-w4 )t
I j , 2 , 3 4 B1 B2 B3 B4 60  2 3 _4 e I dk

- 0,1,2,3,4 1 2 3 4 0+1+2-3-4 i-1i-w 1+ 2-w3 w4)
(2.23)
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Finally, the two orders, Eqs. (2.16) and (2.23), are combined-into a single

equation for B cis8

i 1' TT(2) 8*86
at JJ 0,1,2,3 B12 3 0+1-2-3 -z41dd 3 +

I.0,1.,2,3,4 81828384 60+1-.2-.3-.4 e(W~)dl~

+ 3 * B*BB e ww w2u34)dkkd k+ JJ 091,29,3,4 81828384 0+1+23-4 = dk 2d=3 4

(2.24)

*Eqaton(2.24) is a modification of the Zakharov equation that accounts

for hher order interactions.
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3. Comments on Zakharov equation for finite water depth

Denoting cB by B we rewrite Eq. (2.16)

* B (k, t ) ?

L kldk.2dk3 T12 (2k(1.1 ._2 ,kt3) B* (k_1 ,* t) B (.2,ot)B (k3 , t) 6 (k_+kl-4_-k3) e (+l_''0t

- (3.1)

The first order free surface elevation is related to B through Eqs. (2.12a),

(2.13), and is-given by

rnx,t) = (- -J {B(k,t)ei(kxwt) + c.c) dk (3.2)

Equation (3.1) is the now well-known Zakharov equation, generalized for
water of any constant depth. The fact that Eq. (3.1) is valid for finite depth

* affects only the expressions for w(k) and T(2)(k,k1,1 ,k3), which become depth

dependent.

The purpose of this section is to show the connections between the Zakharov

equation and other model equations, as well as to check our depth dependent

expression for T(2). Note that for h - our equation for T (2) Eq (A.5c)
gives the same result as does Appendix A of Crawford, et al. (1981). This

- result is different from that given in Yuen & Lake (1982) (even after correc-
*. tions of minor misprints). This apparent discrepancy is related to the special,

almost-symmetric (with respect to 4 and k3) structure of the Zakharov equation.

This structure allows some freedom in the choice of T(2 ,  i_ 2,_3)
can be replaced by ofTf(2) (kI',.k k3 ) + (I-) T(2)(kkl k3,12), with arbitrary a,

without altering the value of the integral on the r.h.s. of Eq. (3.1). Any

T(2), obtained in some legitimate derivation can be made symmetric in .!,k3 by

choosing a = 0.5. This symmetric T(2), denoted by T, is a uniquely defined

function of k,kl,k 2 ,k3 and h and will be used in the sequel.

Relation to Hasselmann's energy transfer model

The energy transfer equation for a finite-depth gravity-wave spectrum,

originally obtained in Hasselmann (1961), was rederived by Herterich & Hasselmann

• . . -°- . . . - . -. " % o • - . - . . . . • .- '. . - . * -* . .-. - . . =
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.* (1980). This last paper served as a reference for the verification of the

expression for T, Eq. (A.5c). By reasonings similar to those in Longuet-

Higgins (1976), but starting from the Zakharov equation (instead of the .cubic

Schrddinger equation, used by Longuet-Higgins) the following energy transfer

equation is obtained

a , BCLk t)
ckt)*4v J T(kk,,k, )[C( )C( 3)(CQk) + C(kQ)) - CkCj)CS)

t+C(3))]6(k + kl )6( 2-3) dkd.kdk3  (3.3)

where the wave-action spectrum.C = IBI2

.-For strict resonance conditions, which are implied by the two 6 functions

-. in Eq. (3.3), T is also symmetric in its two first arguments, k and k1.

Herterich & Hasselmann's F(k,t) is given by w(k)C(k,t)/4g r and their inter-

action coefficient D is given by
b2

16Dv ( i..3)I/2 T(k,kl,2,k3 ) (3.4)
kl) ....t.) T .= A

for resonating quartets.

The above identity, Eq. (3.4), has been verified numerically, and thus

serves as a mutual check of the rather lengthy algebra involved in the deriva-

OP tion of both models.

Relation to the nonlinear Schridinger equation

taThe derivation here follows the lines of Zakharov (1g68), who showed

S that, in the case of infinitely deep water, the cubic Schrddinger equation

is a particular case of the more general Zakharov equation. In the case of

finite water depth, the value of T(k,k k2,k3), in the limit when kl , ,

tend to k and h is fixed is not unique. In order to provide a better grasp

* of this nonuniqueness, we include here an outline of the derivation of the

finite depth nonlinear Schrddinger equation.

S.... . .... .... ...... ....-................................... .... .. ... ...
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Restricting the analysis to narrow spectra around k = (k , 0),. we
-0 0

rewrite all wavenumbers as k = k + -(i Xi) and 1_1 /k o << 'I.

Introducing a new variable A(i_,t) B(k,t)e-i[W("--(k o)]t into Eq. (3.1)
gives

;;;BA .A(p, t)
1 -a--- [((k) - oA(J,t) =

-~o+ k *-, , i2 k +ip)A*( *)A(, 3)65(± - 2-43) d 1 dP%

,,,.(3.5)

Equation (3.2) is then expanded to the lowest order in the spectral width

r1(x ~wt) ). 1W..0/2 {i[koxl-w(k0 )t) J 1P,~'±d cc

(7g-,-e 'p3~ -Ij ~
mReta(x,t) e ol ) } (3.6)

where the complex wave envelope a(x,t) is the inverse Fourier transform of

A(_,t), multiplied by the coefficient (Zw(k )/g) The frequency difference
0

1 on the l.h.s. of Eq. (3.5) is replaced by its Taylor series expansion up to

the second order in the spectral width

Cg ;i+ X2 + .b+ 01,12)

where Cg 2/kc /k and 2 = gkoth(koh). Multiplying

1/2Eq. (3.5) by (2wo/g) and taking its inverse Fourier transform yields

iaa + Cg a + .2a + a 2a-3t g 2ko 2x 2 x2

_ _J J - . 3 "I l ko _o+ 3)A*(_ 1 )A(.)A( 3)e d d. 2d... 3

(3.8)
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One-tan show that the-Taylor series expansion of-T, to thelowest order in the

spectral width, is given .by

S.,k-,T) + T+ T- (3:9a)--- 0' I TIII TIV

where

T 0 -lOa2  9]; =th(koh) (3.9b)

320ir a j 2 gli-±lth(hlt-j1I) - c(*-*) (3.9c)
:. .ko  2

Tuu 3 - 12-+ 13a 2_ a4 (3.9d)
Ma32,r2G a 2a

T 1"' k3  [2c + C2(1-02')2]2 2 e

16ir.a gth(hl*.-jl c2(*2*1) 2  p

Substituting Eqs. (3.9d,e) into Eq. (3.8 ) gives

a2  =~a oh Cal 2 C (3.10)

0ax 2  ax I
where

a2k4 k2

0 "j (1- 12 + I _ a[2 c + (1 ), (3.11a,b)

., and
-2

W, " t l-.tlItthhl I) - (*'*l)

Note'that for any finite depth and for Vj' l 0 0, j = 2, 3, the values of

T II, T IV and that of the integrand in Eq. (3.11c) depend on angles ej, the

"directions" of approach to the limit, where

,
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cosej = lim {i }
&j'&l Ij I1

This nonuniqueness disappears for ini'finitely deep water.
-01

Regarding the integral I, Eq. (3.11c). one can show that I -l
where fo is a solution of the following boundary value problem 1

2 %2  32% a 2 %
S+ -2 + - 0, forz<0 (3.12a)

ax1  ax2  az

ao a2 0  cg 2aa+ g 2 aX at z =0 (3.12b)

0 at z =-h (3.12c)
az

Thus 0 appears to be the mean flow potential. The system of Eqs. (3.10),
.. (3.12) was obtained by lusim & Stiassnie (1982) using a multiple-scale approach.

In the particular case where the water depth is shallow compared to the group
length th(hIjj-plI) can be replaced by h.11-*lI and the set of equations given
by Davey & Stewartson (1974) is recovered. For water of infinite depth,
Stlassnie (1983) extended the analysis to one order higher in the spectral

width, and rederived Dysthe (1979) set of equations.

£!

'.9
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4. Linear stability of a uniform wave train

This section deals with the mathematical formulation .of one of the

simplest possible non-trivial nonlinear interaction problems and its linearized

(short time) solution. The smallest number of wave trains required to enable

|! significant nonlinear interaction is three for class I as well as for class II

interactions. In what follows, we denote these 3 waves by the subscripts a, b,

* and c. For anything exciting to happen, these 3 waves have to form a nearly

resonating "quartet" for a class I interaction, and a nearly resonating
"quintet" for a class II interaction, see'Eqs. :(2.18) and (2.21), respectively.

To form a "quartet", or a "quintet", out of three waves, one can "count"

one of the waves, ka, twice for class I interactions,-and three times for class

II interactions.

The governing equations for class I interactions are a discretized form

of Eq. (3.1)

dB 2 2 lc 2)Ba Q It
idta(Taaaa Bal + ZTabablBb+ 2Tacac+ 2TaabcBaBbBce

(4.1a)

d Bb = (2" T2) * B2 eiit ::

dt (2Tbabala 2 + Tbbbblb 1  + 2TbcbclBcl b + bcaac ae

(4.lb)

-in tdSc  2 12 -iC,2lt
l d- (2TcacaIBa12 + 2TcbB12 + TccccIBcI2)Bc + TcbaaBbBe

.. (4.1c)

where Qra 2wa - b - wc.

For classfl 3-wave problems, which do not satisfy Eq. (2.18), Eq. (2.24)

similarly gives

i a '( 312 + T2 2 )B+2U (3) (B2B
I - (Taaaalea + 2TabablBb 2 + 2TacacBc 2)B a + aaabc a BbBCe

(4.2a)
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dBb B2 2 2 +..(2) U *3 -in II t
Sdt- (2TbabaIea +TbbbblBbl 2TbcbcI b bcaaa ca

(4.2b)

i d (2 2+ + 2T2 + Ub2) B* 3 1
~ ctt~ * (2TcacalBa + 2TcbcblBb!2  T BJ2)Bb b b " l

(4.2c)

where a 3 bc and U( 3  is assumed to be symmetric with respect to bII 3a-b aaabc
and c.

To complete the mathematical formulation of either of the above systems

of equations, Eq. (4.1) or Eq. (4.2), one has to specify the following initial

conditions:

Ba(0 )  b a B = bb, and Bc(O) =bc ;

where the relation between Bj and the actual physical amplitude a. is
- . 13,j

u~ __ IB~il

One can assume that the initial amplitude of one of the waves, which is

called "the carrier" and denoted by the subscript a, Is much larger than the

amplitudes of the other two waves, denoted by b and c, to be called "the

• disturbances": ibbl, Ibcl << Ibal. Only linear terms in the disturbances Bb,
" Bc are retained, so that the carrier wave remains unaffected in this short time

•eTaaaa bal 2 t
analysis, and is given by B a = ba e ba is assumed to be real

without loss of generality.

Class I instabilities:

The wave numbers of the carrier and the disturbances are

ke-k(1, 0) (4.3a)

k(l+p, q), kc ko(1-p;-q) (4.3b,c)

'b:'

- * . . . a.. - a. . a. a -- .. - - a a... a,.'

a. . . . a . - a .
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so that Eq. (2.18a) is satisfied identically. The linearized version of Eqs.

(4.1b,c) is

-. ~d in=Tbb b2  b
["db 2 2 144a

S-Ft - 2T baba baBb  Tbcaa c ba e(4.4a)

dBc 2 *2 inIt
i d 2Tcaca ba B c + TcbaaBbbae (44b)

2
where 0I 0" + 2T 2aaaa ba"

'Assuming a solution of the form
-i(.5 .y i(M (05 6_1) t

Bb a bbe- " t  Bc = bce

one can show that 61 must be given by

S2 D1/2
6,= (Tbaba - Tcaca) ba t D (4.5a)

-where

D [0.5 - (T + T )b2  - T T b (4.5b)
baba~ caca a bcaa cbaaa

Positive values of Di(p,q) correspond to stability regions in the p,q plane

and vice versa. The curves DI = 0 form the stability boundaries, and the point

where D attains its minimum is called the most unstable mode. The value of

a, = (-DI/gko)1/2 for the most unstable mode is called the maximum growth-rate.

Class II instabilities

For this case, the carrier wave numbers k, and k are still given by Eqs.

(4.3ab) but

,c z ko(2-p, -q) (4.6)

so that Eq. (2.21a) is now satisfied identically.

4 .
, .' , ' , '] ., .', ,.4, , -. -.b.. - , ; . .. - .- . .. - .,., . -. . .. . . , ,- . . . .; "" " :'
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The linearized, short-time, version of Eqs. (4.2b,c) is-

dBb isZ 1t
T b2B + B b te (4.7a)

di f2Tbababa b  bcaaa c a

dB2 (U2 ) ~ 3-ii't
c 2T + bB B b ie (4.7b)

idt cacaba c cbaaa b a

where nII " I +3Ta b 2

Assuming, again, a solution of the form
S-i (0.5h I i1+61 Idt -I (0.M If-Sill t

Bb bbe • B c =bce

one finds that

2 1/2 (4.8a)
S(Tbbaa caca a ± II

-D * [0.5n - (Tbaba + ,)b2)2 -(2) U(2) b6
D [ mcaca) a3 -bcaaa cbaaa a (4.8b)

The stability boundary and maximum .growth rate for class II interactions

are obtained from Eq. (4.8b).

Results

In Fig. 1, we show the class I and class II instability regions (as shaded

zones) for k0h - 2. The solid lines represent the calculated results and the

dashed curves are those of McLean (1982b,Figs. 2b and 2c). In Fig. la,

k oao - 0.195 (where a0 is the first order amplitude of the carrier in Stokes'

* expansion), which is equivalent to (ka)m a 0.2 (the subscript m stands for

McLean). As a conversion fomula, we used the following expression.
24ch6(koh) +'335

(ka)m koa° + (koao) + O(koa )5  (4.9)
, 64sh6(k0h) 0 0 0 0

given by Sbjelbreia and Hendrickson (1961).

Fig. 1 about here please

'I:.:-
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In Fig. lb, k a = 0.326 (corresponding to (ka) 0.35).

The locations of the maximum growth rates (p I q1 ), (pII. qII), for class I

and class II instabilities, respectively, are marked by x for our results and
by a dot for ticLean's results, and their numerical values, as well as those of

the maximum growth-rates ci, o, are given in the figures. The overall agree-

ment in Fig. la (which is for actual amplitude, which is 47% of the theoretical
I'- maximum amplitude, Cokelet, 1977) is quite satisfactory. For smaller steep-

nesses, the agreement becomes even better. On the other hand, for very steep

waves (in Fig. lb, the actual amplitude is 82% of the theoretical maximum
amplitude), the agreement is less impressive. Nevertheless, a somewhat better 4

agreement is obtained if we compare McLean's results for (ka) m = 0.35 with the

artificially amplified value aoko a 0.41, see Fig. Ic.

A similar degree of agreement was obtained for several other water depths,
4. and should give the reader some indication about the validity of the present

model. ___________

I Fig. 2 about here please

4 Figure 2, which is quite typical, is used to demonstrate some general features

as well as clarify some of the terminology which is used later.

One can see that a certain similarity exists between class I and class II

instability regions. Both can be regarded as consisting of two domains: a
wider band at lower values of p and usually a much narrower region at higher

values of p. The first region will be referred to as the main region, and the
other as the secondary instability region. The qualitative difference between

class I and class II instability regions is that for class I the two domains
are usually disconnected while in the case of class II they are bound by a line

of infinitesimal thickness. The secondary regions sometimes disappear completely,

and for class I, the instability region in these cases terminates at some q> 0
.4 (compare with Crawford, et al., 1981, for infinite water depth).

Figure 2 shows the three wave-number vectors k k k as well as the

location of four points of local maximum growth rates:
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A. Class I point (pI, qI) with local maximum growth rate oI ,

B. The secondary, Class I point (pt, qs) with local maximum growth rate ,

C. Class II point (pII, q11 ) with local maximum growth rate an, and

S S sD. The secondary Class II point (p1I' q) with local maximum growth rate a

* . For the particular data of Fig. 2 (k0 h = 0.35, k o= 0.04) oal > a I > aii >0I,
These inequalities are by no means general as will be shown in the sequel.

Nevertheless, for most cases, aI >o I I

Fig. 3 about here please

Figure 3 is a summary of the results for Class I instabilities. Figures
3a arnd 3b give the values of p, and qI, respectively, as functions of the water
depth and wave steepness. The depth is expressed by th(k h) (the range covered0
is 0357 < koh < -); and the wave steepness by Cokelet's (1977) c2 , denoted hereo 2
by ei (the range 0 < < 0.7 is covered).

The isolines in Figs. 3 and 4 were drawn using interpolation and are based

on about forty computed data points, almost equally distributed over the figure

domain. Figure 3c is a plot of am, = max(a I, o1) isolines. Note that for the

region confined by the broken lines o > a, (sometimes by a factor of three),
whereas the opposite is true in the outside region. For the case where

a s oI, p) is in the range l.05-1.30 and q, = 0 which implies that the most
unstable mode is two dimensional.

Fig. 4 about here please

The results for Class II are given in Fig. 4. Note for this case pII is
always 0.5. Figure 4a gives the values of q1 I, and li is shown in Fig. 4b.
For the domain above the dashed line in Fig. 4b, aI > a" which indicates that

for this region Class II instabilities may become dominant.

The question whether the disturbances related to the highest value of a will

dominate the physical process remains open, and awaits additional evidence. The

authors hope that their current study of the long time evolution of Class I and

Class II instabilities will throw some light on this and on other relevant aspects

of these important processes.
V-"..
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APPENDIX

- The kernels in Eq. (2.9)

w2 2-
S(1) = (1) k 2 12 2 2
0,1.,2,3 g .0,1,2,3"'2g .-11 -i---.21 + l2kk3 +.l+L 1 I )} (Ala)

1s2 + to j(2) 2 (+)kk_ 212jl) J-kk 1 2  +22

0,12,3,4 0,1,2,3,4 + -- -2,1,3,4 2 g

(A.lb)

where

' th llh)m
-. ~ {21  2hl~h (w 2 + . 2 + 2 (A.Ic)

.0,1,2,3 4 I 0-2 I-+ w-3-- +

;'.3 2 2

J(2) - th(il lh) 2 iL+ 22 0-2 J()(A.d)
,The 0,1,2,3,4 -6- 2-- - " u-2,1,3,4 (

The interaction coefficients in Eq. (2.11)

Second order:

= (1 + (A.2a)

01,2 -2 0 ,1 ,2  1,2,0

1(2)  = 2(Vo,1  - (A.2b)°v 0,1,2 2( ,,2- V-0,2,1 v1,2,0)  (.b

V (3)  V

01,2 0,1,2 1,2,0 (A.2c)

where

(ol,2  -o 1  + ]. I (A.2d)

Third order:

W (1) W -' (A.3a)
0,1 ,2,3 12,-0,3 ,1 .2,3

L.,
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1w(2)-w--

W0,,2,3 - ,-i,2,3 + W2,3,-,-1 W2,-i,-0,3- W-0,2,-1,3 - W-0,3,2,-i - 3,-1,2,-0

(A.3b)

(3)  - 2W- -0 +W0,11,2,3 -,- ,-2,3 -0,3,-i,-2 1 ,-2,-0,3 - 2W 1 ,3,-0,-2 (A.3c)

=:W(4)W (A.3d)
0"1,2,3 = WO,1,2,3 ' W1,2,0,3

where

"1 'w3] 1/2

---thI-h) thI h) E 2 2 + 2 + 2 (A.3e)

[ w042 +w 0 43  wl)12 wl+3 )

Fourth order:

0,1,2,3,4 = '0,I,2,3,4 + 0,1,2,3,4 (A.4a)

(0I2,3 = 0,4,2,3,-l + a0,4,2,3,-I + aO0 , 3 ,2 ,-1,4 + 00,3,2,-1,4 +

+ 0,2,-1,3,4 - B,2,-1,3,4 " ',-1,2,3,4 - 00,-1,2,3,4 (A.4b)

0=1,2,3,4 "0,3,4,-1r2 + 80,3,4,-I,-2 - aO,- 1 , 3 ,- 2 , 4 - o0,-I,3,-2,4 -

- a0 ,- 1 ,4 , 3 ,- 2 - o0,-1,4,3,-2 + 0 ,3,-2,-1,4 - '0,3,-2,-1,4, +

+ aO, 4 ,- 2 ,3 ,-I - 00,4,-2,3,-1 - °%,-I,- 2 , 3 ,4 + B0 ,.-,-2,3,4

(A.4c)
::.:.: (4)

0,1,2,3,4 = -0,-I,4,-2,-3 B0 ,- 1 ,4-2 3 + ,4,-2-3, 0,4,-2,-3- -- + - +

- 30,-l ,-2,-3,4 0 B,-1i,-2,-3,4 - -i,-2.4,-3 0 ,-i ,-2,4,-3

(A.4d)

. . -

• °. ~ . - - - - , - - -- A - - - - -
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SX(5) +a(A. 4e)
0,1,2,3,4 U - 0,1,-2,-3-4 + 60,-1,-2,-3,-4

.where

~ ("M 2j 11  (2) M+4~1I
T _' 0,1 ,2I3 (A.4f)

- W312{iB0 . 2 ,.3 ,4 =  313 wo 2lj { 'S1) ,21w g 0-1 ,2,3,4 2 1k 1 -

4) f 1 z2I22
N1141___ wl+4  -'2+3(..2 r th (iIh) -_I i I[ th kL2Ih)-k 2 []} (A.4g)

-The kernels of Eq. (2.15). (i . .(1)v(l) v(l) -v()
,.' :011 ,2+3  2+3,. 2  v0 , 1 3 2 "+3 , 3 , 1 .

w2+3 " w2 - 3 wl+3 - wl - w3

" v(2) v(3)
. 0,-1-3,2 -1-3,3,1 (A.5a)

:. '1+3 + wl + w3
;!V (1  V(2) v('M V(2) V(2) v(2)

(2) 0,2,3-1 3-11,3 . 0,3-1,2 3-1 I 3 _ 0,2-0,2 1-3,3,1(2)) W 1.2_______ 3-1.1___ _3 0__2-0,2__3_3__10,11,2,,3 2, 3  3-1 + 1 -3 w3-1  + Ol - 3 1-3 + 3 - w

z V(3)^ (3 V V(3) v(3)  V(I  V(2)
-O-0-1,1 -2-3,3,2 V ,-0-1-2-3 3,2 2+32,3 0,2 , 0+1

''0 2+3 + w2 + w°3 w2+3 + w2 + 4' '2+3 - '2 - 3

(A.5b)

-(2)
T0,1,2,3  0.5(T(2) + 5(2) 3t
0,9, 0,1,2,+3 0,13,2 (A.5c)

,. 3 ()V(2) V(l) V(2) V(2) V (3) V (2)

)(3) v 0,1+2,3 1+2,2,1_ 0,1,-2+3 -2+3,2,3_ 0,1,2-3 2-3,3,2 -
0 , 1 2 .3  0 , 1 2 , 3  " L 1+2 " - u '2-3 +  2 w 3  w2-3 +  3 -0 2

V(3)  V(2)  V( )  V(3)  V(1)  V(3)  • :1;;1 ~ ~0,1-3,2 1-3,39,1 _.0,3,-1-2 -1-2-p,2 01-1 -2,3 -1-2 ,2 ,'1
w" l-3 + w3 " wl wl+2 + w1 + w2 w1+2 + u1 + w2

~(A.5d)
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4V(3) v(O V(3) v(O - v(2) v 3)33,
-(4) (4) - 012+3 2+3,3,2 0,1+3,2 1+3.3,1 0 -2-3,3,2

'2+3 - 2 '3 I+3 'al 03  '+ 4

(A.5e)

The kernels of Eq. (2.20)
v(l) v(I) V(2) vM v(2) v(O)

ii(2) X(2) + O3+42-1 3+43.4 2-1 .12 0,4-1,2+3 4-1,1,4 2+3,2,3 +"0,1,2,3,4 0,1,2,3,4 03+4- 34 2-) "(l_+1.. ) (..)

V(2)  V(2) V(I) - V(2) V(3) V(2)

+ 0,1-3.2+4 1-3,3.1 2+4 2 4 + 10,-3-4.2-1 -3-4.3,4 2-1.1.2 +(01_3 +3-((1)()2 4-w2- 4J + W3+4 +w3+w4)(w2_1+w1.w 2)

V(3)  V(2)  V (3) V(3) V(3) V(2) ii

0,1-3,-2-4 1-3,3,1 -2-4,4.2 0,-3-4,1-2 -3-4,3,4 1-2.2,1
(w1 3*1. . 1)( 2+4.2+w4) 3 (+4. 34 '04) (41_2+w2 -1)

V(I) y(2) V(1) t(2) V(2) t(l)
. 0,2.,3+4-1 3+4-1,1,413 . 0,3+4-1-2 3+4-1,1,4,3 - 0,1,2+3+4 2+3+4,3,4L2 _

'3+4-1+(01"'3-'4 0 3+4-l+wl1"3"w+40 - w2 -w3 " w4
V(2)_ T(3) _ V(3) :-(4) , V(3) f(4)

0 ,1-3-4,2 1-3-4,3,4,1 _ 0,1,-2-3-4 -2-3-4,3,4,2 _ 0,-2-3-4,1 -2-3-4-,3,4,2 _
"1-3-4 + w3 + w4 " w 2 2+3+4 + '2 + w3 + w4 '2+3+4 + '2 + w3 + '4

V(2) Wkl1) V(2) g(1) V(2) W(1)

4-1,1,4 0,4-1,2,3 4-1,1,4 0,2,4-1,3 3 -1,1,3 0,4,2,3-1 .
44-1 + W1 " w 4  w4-1 +w 1 " 04  w3-1 + wl -w3

V(2) -W(2) V(1 ) W(2) (1 ) W(2)
1-4.4,1 0.1-4,2_3 _ 2+4,4,2 0,1,2+4,3 _ 3+4,4,3 0,1,2,3+4

w1-4 + N " 1 w2+4 -' 2 " '4  w3+4 "03 - 4

2-4,4,2 0 -2-4 13 . - 4,4,20 1 -2-4 3  (A.6a)

w2+4 +w2 + w04 0 2+4 + w2 + w 4

9' *1

I. -!.. . . . . . . .
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V('1 V(1 V(3) V(1) v (2) V(2-)
u(3) , (3) + .0+ 4 1 2  3 ,4 -1-2,1,2 + 0,41,3-2 4-I1 14 3-2.,2 ,3 +

0,1,2,3,4 0,1,2,3,4 (w +W2+W1+ 2) ( 3+4 -) 3 4 ) + -

; V(1) V(3) V(1) V(2) V M1 ():

+ 0,-1-2,3+4 -1-2,1,2 3+4,3,4 + 0,1+2,3+4 1+2.1.2 3+4,34 +
(l +2 1 "a 2 1 -({03+4" 3" 4) (w1 +2" 1'2 (7 4 "'31 4)'3'

v: V(2)  V (2) V (2)  V (2) 11(3) V (3)

+ + 0,1-3,4-2 1-3,3,1 4-2,2.4 + 0,-3-4,-1-2 -3-4.3,4 -1-2,1,2 +
("W (-3+t3" I)(tw4-2+w -w4) + 3+4"3 4) ({+2+{"w2)

v(3) v(I) -v(3) v(3) v2)  v(2)
+ , 1+2 . 3 - 4 1+2,1.2 -3-43 4 .+ 3 1-3.2-4 1-3.3.1 2-4,4,2 ++~i ({01 +2" 'l'2 ) ({3+4"k 3W74+3 (w{1-3 + 3-wl w2-4"u'4 "{2 )

N (3) v (3) v(1) .v(1 0.-?(3) V(1) -(3)

02-3-4,1+2 -;3-4,3,4 1+2,1,2 _0,3,41-2 4-1-2,1,2,4 0,4-1-2,3 4-1-;2 ,1,+2  ,4
(W42-w--w2)(w3 4+w3+w4) + +2 - {4-1-2

.V(2) f(2) _ " V(2) i (2) V(3) -(3) _

-0,1,4+3-2 4+3-2,2,4,3 . 0,1+2-3,4 1+2-3,3,1,2 _ 0,1,2-3-4T2-3-4,3-,4,2 -

W4"- +24+3W2 - '3 - W4 wl+2-3 + .3 1 wl - W2 w2-3-4 + '3 + W4 " W2v' (3) V()V3
V(3 w() v! 2, ,
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Figure Captions

Fig. 1: Bands of instability for k0h = 2. The instability boundaries

are given by the solid lines and the points of maximum growth

rate are labeled by X. McLean's results are marked by the

dashed lines and by e. (a) koa o = 0.195, (ka)m = 0.2;

(b) koa o a 0.326, (ka), = 0.35; Cc) koa o = 0.41, (ka) m = 0.35.

Fig. 2: Bands of instability for koh = 0.3S, koa o = 0.04 and notation.

Fig. 3: Summary of results for Class I instabilities. (a) Isolines of

p, (for E2 = O, p, = 0); (b) Isolines of qI (for either c 2= 0

or th(koh) = I, ql = 0); Cc) Isolines of 10o , the maximum2! o
growth rate (for e. a 0,a 0).

-IIFig. 4: Summary of results for Class II instabilities. (a) Isolines of

q (b) Isolines of 10Ii.V
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